STEYX関数の詳細解説(Excel)

ExcelのSTEYX関数の使い方とサンプル解説

ExcelのSTEYX関数は、2つのデータセットの間の線形回帰の予測誤差(標準誤差)を計算するための関数です。この記事では、STEYX関数の使い方やサンプルを解説します。初級者向けに難易度を下げた内容で説明し、正確で丁寧な文を心がけています。

STEYX関数の構文

STEYX関数の構文は以下の通りです。

STEYX(既知の y, 既知の x)

ここで、引数について説明します。

  • 既知の y:独立変数(x)に対する従属変数(y)のデータセットを指定します。
  • 既知の x:従属変数(y)に対する独立変数(x)のデータセットを指定します。

注意点として、既知の y と既知の x のデータ数は同じである必要があります。

STEYX関数のサンプル解説

次に、STEYX関数のサンプルを用いて具体的な使い方を解説します。以下の表は、ある商品の売上数(A列)とその商品の広告費(B列)を示しています。

AB
1売上数広告費
25010000
36012000
47013000
58015000

このデータを使って、売上数と広告費の間の線形回帰の予測誤差(標準誤差)を計算してみましょう。次のような計算式を使います。

=STEYX(A2:A5, B2:B5)

この計算式で、STEYX関数は既知の y として A2:A5 の売上数データ、既知の x として B2:B5 の広告費データを使用しています。この式を実行すると、おおよそ 7.95 という値が返ります(値は実際のデータによって変わるため、この値は参考程度にしてください)。

この結果は、売上数と広告費の間の線形回帰モデルの予測誤差(標準誤差)を表しており、予測がどの程度正確かを評価する指標として利用できます。標準誤差が小さいほど、線形回帰モデルの予測が実際のデータに近いことを示しています。

まとめ

ExcelのSTEYX関数は、2つのデータセット間の線形回帰の予測誤差(標準誤差)を計算する便利な関数です。この記事では、STEYX関数の使い方やサンプルを紹介しました。構文や引数の説明、具体的なサンプルを通じて、初級者でも理解しやすい解説を心がけました。これからExcelで線形回帰分析を行う際には、ぜひSTEYX関数を活用してください。