Excelの「TDIST関数」の使い方
ExcelのTDIST関数は、t分布(Student’s t-distribution)の確率密度関数を計算するための関数です。統計的仮説検定や信頼区間の計算に使われます。この記事では、このTDIST関数の使い方を詳しく解説します。
TDIST関数の基本的な使い方
TDIST関数の構文は以下の通りです:
=TDIST(x, 自由度, 尾部)
この関数には3つの引数があります。
- x:t値を指定します。これは通常、サンプルデータから計算された統計量です。
- 自由度:t分布の自由度を指定します。自由度は通常、サンプルサイズから1を引いた値(n-1)になります。
- 尾部:1を指定すると片側検定(1-tailed test)、2を指定すると両側検定(2-tailed test)を行います。片側検定は、代替仮説が一方向にしかない場合(例えば、「AはBより大きい」)に使用します。一方、両側検定は、代替仮説が両方向に存在する場合(例えば、「AはBと異なる」)に使用します。
TDIST関数の使用例
次に、TDIST関数の使用例を見てみましょう。以下の表は、ある商品の販売員ごとの月間販売数量(単位は個)を示しています。
\ | A | B |
---|---|---|
1 | 販売員 | 販売数量 |
2 | 山田 | 120 |
3 | 佐々木 | 110 |
4 | 鈴木 | 115 |
5 | 田中 | 130 |
6 | 高橋 | 125 |
このデータから、販売数量の平均値(μ)と標準偏差(s)を求め、特定の販売員(例えば「山田」)の販売数量が全体の平均から有意に異なるかどうかを検定するために、TDIST関数を使ってみましょう。
1. 平均と標準偏差の計算
まず、全体の販売数量の平均と標準偏差を計算します。これは、以下のExcel関数を使用して行います。
=AVERAGE(B2:B6) # 平均値 =STDEV.P(B2:B6) # 標準偏差
この例では、平均値は120個、標準偏差は7.48個とします。
2. t値の計算
次に、「山田」の販売数量が全体の平均からどれだけ離れているかを測るために、t値を計算します。これは以下の数式を使用して計算します。
t = (x - μ) / (s / sqrt(n))
ここで、xは「山田」の販売数量(120個)、μは全体の平均(120個)、sは全体の標準偏差(7.48個)、nは販売員の数(5人)です。これを計算すると、t値は0となります。
3. TDIST関数の使用
最後に、計算されたt値と自由度(n-1 = 5-1 = 4)を使用して、TDIST関数を計算します。尾部には2を指定し、両側検定を行います。
=TDIST(0, 4, 2)
これにより、得られるp値は1となります。これは「山田」の販売数量が全体の平均から有意に異なるとは言えないことを示しています。
以上がExcelのTDIST関数の使い方になります。様々な統計的仮説検定において活用してみてください。